The use of computer technology for three-dimensional (3 D) reconstruction is one of the important development directions of social production.
The purpose is to find a new method that can be used in traditional handicraft design, and to explore the application of 3 D reconstruction technology in it. Based on the description and analysis of 3 D reconstruction technology, the 3 D reconstruction algorithm based on Poisson equation is analyzed, and the key steps and problems of the method are clarified. Then, by introducing the shielding design constraint, a 3 D reconstruction algorithm based on shielded Poisson equation is proposed. Finally, the performance of two algorithms is compared by reconstructing the 3 D image of rabbit. The results show that: when the depth value of the algorithm is 11, the surface of the rabbit image obtained by the proposed optimization algorithm is smoother, and the details are more delicate and fluent; under different depth values, with the increase of the depth value, the number of vertices and faces of the two algorithms increase, and the optimal depth values of 3 D reconstruction are more than 8. However, the proposed optimization algorithm has more vertices, and performs better in the reconstruction process; the larger the depth value is, the more time and memory are consumed in 3 D reconstruction, so it is necessary to select the appropriate depth value; the shielding parameters of the algorithm have a great impact on the fineness of the reconstruction model. The larger the parameter is, the higher the fineness is. In a word, the proposed 3 D reconstruction algorithm based on shielded Poisson equation has better practicability and superiority.